2017年2月27日 星期一

『臺博新知』:仿生機器蟑螂JumpRoACH會彈跳爬行

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館


南韓首爾國立大學(Seoul National University)仿生機器人實驗室(Biorobotics Laboratory)趙(Kyu-Jin Cho)副教授領導的研究團隊與美國加州大學柏克萊分校(UC Berkeley)仿生系統實驗室(Biomimetic Millisystems Laboratory)費林(Ronald S. Fearing)教授合作,於2016年5月在2016 IEEE國際機器人與自動化大會(International Conference on Robotics and Automation,簡稱ICRA)發表一款仿生美洲家蠊(Periplaneta americana),兼仿生直翅目(Orthoptera)昆蟲向上跳躍能力的機器蟑螂JumpRoACH,具有長方形機體和六足,重量僅59.4公克,最高爬行速度可達到每秒0.62公尺,還能彈跳達1.10到1.62公尺高度,跳躍距離為0.6公尺,當機體上方加裝可開合雙翅的橢圓形外殼,能在空中完成翻越等高難度動作,即使不小心翻肚也能靠打開雙翅翻正,繼續向前行走或向上跳躍。跳躍後未必能以六足朝下的正確姿態著陸,但可像真正的蟑螂打開翅膀,自行從側面或背面翻轉回來,因此若從高處掉落也不會受損。

仿生機器蟑螂JumpRoACH會彈跳爬行,也能自我翻正(繪製者:王美乃)。

美洲家蠊為蜚蠊目(Blattaria或Blattodea)蜚蠊科(Blattidae)的昆蟲,分布很廣,是室內常見的居家害蟲和衛生害蟲,體型小、動作快、擅走能飛,也是跑最快的昆蟲之一,無論壓縮躲藏或鑽縫爬牆,幾乎無所不在;而蝗蟲、螽蟖、蚱蜢、蟋蟀等直翅目昆蟲遍佈全世界,通常具有發達的後腿,擅於跳躍比身體長數十倍的距離,用來覓食及躲避天敵。研究團隊觀察發現直翅目的昆蟲和半翅目(Hemiptera)的沫蟬,在行走時配合跳的動作,不僅可快速向前或向上一段距離,也能輕易跳躍障礙物,即使因跳躍導致軀體翻面,也能迅速翻正姿態。因此綜合模仿蟑螂和蝗蟲的優點,將跑步與跳躍等技能結合成為多模式運動方式,使微型機器人的運動更高效快速。

美洲家蠊(Periplaneta americana)跑得很快,會壓縮躲藏、鑽縫爬牆、飛行跳躍,為家戶常見害蟲(圖片來源:歐陽盛芝)。

研究團隊開發出新型彈跳機制,具有增強的儲能能力和可調跳躍高度的主動觸發器,由可折疊與展開的捲動暨滑動關節接頭、類似人類膝關節的菱形四連桿機構組成,可控制JumpRoACH跳躍程度從微幅到3公尺彈射的垂直跳躍。他們將跳躍組件整合組裝在費林教授2009年發明的輕量級「動態自主爬行六足機器人」(Dynamic Automonous Sprawled Hexapod,簡稱DASH)機體中心長、寬、高為10×2×3.5公分深的空間內,改善以往大多數小型跳躍機器人使用彈簧與閂鎖(spring mechanism with a latch)機制,因依二進制(binary)由閂鎖控制彈簧捲起或彈開,無法控制跳躍高度及距離的問題。

DASH長、寬、高為10×5×10公分,重16.2公克(含1.8公克的3.7伏特50亳安鋰聚合物電池),以可縮放的智能複合材料製造(Smart Composite Manufacturing,簡稱SCM),並使用電子封裝一個微控制器、馬達驅動器、和藍芽通信模組製成無線操作控制,可模仿昆蟲的交替三角架式步態行走,經測試能以每秒爬行1.5公尺距離的速度持續運動40分鐘;若從28公尺高處摔落混凝土地面,即使衝擊速度達每秒約10.3公尺,仍未損壞且保持正常運作。

當JumpRoACH爬行或移動時,連桿被壓縮,八條乳膠橡膠帶以最大限度儲存能量,並根據跳躍的目標以直流馬達主動觸發齒輪、調整滑輪鋼絲捲線長度和儲存或釋放能量,使機器蟑螂能夠控制跳躍的離地速度及高度,直流馬達同時驅動因翻轉所加裝的雙翅背板外殼。機器蟑螂跳最高時,馬達完全纏繞滑輪線、以儲存更多能量;進行低跳時,馬達減少繞線長度、且僅壓縮部分跳躍組件,若被壓縮至小於3.5公分時,跳躍結構未接觸地面,JumpRoACH可正常爬行。爬行速度和離地速度是獨立控制,當爬行速度為每秒0.63公尺,且離地速度為每秒4.52公尺時,可跳躍1.1公尺,並能克服0.8公尺高的障礙物。但JumpRoACH尚無法精確掌握跳躍的距離及高度,偶爾會撞到桌角摔得解體、無法展現翻身技巧;而加裝的雙翅背板也可能因滑翔增長跳躍降落的移動距離,卻未達飛翔功能,因此將繼續研究改善。

未來仿生機器蟑螂JumpRoACH預期將可在地震或火災發生時,克服障礙和崎嶇地形,擴大運動領域,降低運輸成本,鑽進災區瓦礫堆中進行環境偵測及搜救受困者,或直接跳到上層廢墟執行任務,延伸偵防和救難範圍並縮短所需時間,亦可運用於危險區域例如核災現場探勘測繪,甚至可被大規模應用到體型較大的機器人系統或設備,執行太空外星探索等任務。


(以上新聞編譯自2016年5月發行之2016 IEEE ICRA會議論文)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/2/23

本單元學術名稱:生物醫農>動物學
標籤:仿生機器蟑螂JumpRoACH會彈跳爬行

資料來源:

Jung, G.-P., C. S. Casarez, S.-P. Jung, R. S. Fearing, and K.-J. Cho. 2016. An integrated jumping-crawling robot using height-adjustable jumping module. 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE 2016, 4680-4685.

延伸學習:

Ackerman, E. 2016. Cockroach robot flips itself with insect-inspired wings. IEEE Spectrum / Automaton / Robotics / Robot Sensors & Actuators, November 17, 2016.

Birkmeyer, P., K. Peterson, and R. S. Fearing. 2009. DASH: a dynamic 16g hexapedal robot. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE 2009, 2683-2689.

Li, C., C. C. Kessens, A. Young, R. S. Fearing, and R. J. Full. 2016. Cockroach-inspired winged robot reveals principles of ground-based dynamic self-righting. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), 2128-2134.




2017年2月20日 星期一

『臺博新知』:防黏抗污的仿生豬籠草聚合物微球陣列表面

賴婉婷/國立臺灣博物館研究組
歐陽盛芝/國立臺灣博物館
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士

食蟲植物豬籠草的科學研究非常多,其中仿生的重點多針對捕蟲籠籠口唇部,並得到許多重要的成果,但緊鄰唇部且影響捕蟲機制的「蠟質區」(waxy zone),也是非常重要的仿生對象。德國歐斯納布魯克大學(University of Osnabrüeck)史坦哈特(Martin Steinhart)教授所領導的跨校研究團隊,2016年3月在《生物靈感與仿生學》(Bioinspiration & Biomimetics)期刊發表一款仿生翼狀豬籠草(Nepenthes alata)蠟質區的單片聚合物微球陣列(monolithic polymer microsphere)表面,可用於防黏附抗污、抵制灰塵、污垢、及昆蟲,甚至應用於汽車的煞車系統和鈔票的觸覺安全標識等。

仿生豬籠草的聚合物微球陣列表面能防黏附抗污和抵制灰塵,可應用於汽車煞車系統和鈔票觸覺安全標識(繪製者:王美乃)。
翼狀豬籠草的蠟質區又名「溜滑區」(slippery zone),位於捕蟲籠的上半部,包括三種不同的水平分層排列結構,具不同的物理機制,可降低昆蟲的黏附。底層是較大且突起的非等向性(anisotropic)「半月細胞」(lunate cells),長、寬、高為35.5x7.21x9.41微米(=10-6m,μm),以每平方公釐約480個細胞密度規則散佈在扁平的上皮細胞間,半月細胞彎月形開口排列向下,即籠底方向;兩種類型細胞上面覆蓋的是第二層由縝密蠟晶體組成的「下層蠟」,類似屋瓦排列的固態泡沫,由互連的膜狀片晶(platelets)以某些銳角從表面突出,高度0.81微米,機械性相當穩定;第三層是密集的板狀(plate-like)蠟晶體所構成高度3.03微米的「上層蠟」,含有分開的不規則片晶,透過細長柄晶(stalks,直徑0.12微米,長0.80微米)連接到下層蠟,極易斷裂。

兩層蠟以相同化合物組成,但下層蠟較硬、較黏,上層蠟較脆、較易破碎剝離,兩者均具超疏水性,幾乎不會被水和乙二醇(ethylene glycol)等極性液體(親水的)弄濕,但對非極性(疏水的)液態二碘甲烷(diiodomethane)的接觸角卻有顯著差異;蠟質區因被微小蠟晶體連續覆蓋,故產生2微米的附加粗糙度(平均粗糙度Ra=1.909微米,均方根粗糙度rms=2.378微米)。

研究團隊使用半球形有黏性的聚二甲基矽氧烷(polydimethylsiloxane,PDMS)作為探針,測試二星瓢蟲(Adalia bipunctata)和七星瓢蟲(Coccinella septempunctata)在蠟質區的黏附力量,發現昆蟲在蠟質區的黏附力、較去除兩層蠟的無蠟質表面明顯降低,兩層蠟層對昆蟲的拉脫力量(pull-off forces)則相近。昆蟲行走時通常以足爪和表面互鎖並用黏附足墊接觸,有些物種的足墊還會分泌液體黏附表面,由於瓢蟲足最先接觸的捕蟲籠蠟質區上層蠟易碎,造成其黏附足墊被蠟晶體沾黏污染,踏到下層蠟的粗糙度又使足墊實際接觸面積減少、無法固定,若想以足爪下錨鎖住表面,卻因方向倒置且具突出邊緣的半月細胞讓牠們只能向下定向移動,無法朝上逃出捕蟲籠,導致牠們只能掉落或走向籠底消化液中,成為豬籠草的食物。

翼狀豬籠草(Nepenthes alata)捕蟲籠蠟質區的三種分層排列結構,讓昆蟲只能向下走或滑落(圖片來源:林士傑)。

史坦哈特教授從這種機制設計仿生表面,特別著重粗糙度效應,採用雙重複製程序,首先準備微球主模具,再翻模製造機械性穩定且近似半月細胞直徑和規則排列的單片聚苯乙烯(polystyrene,簡稱PS)微球單層表面(直徑幾十微米),以浮花壓製法(embossing)將單片PS微球表面緊密連接到20×20公釐的底層基板上,並在PS微球表面壓出微形似圓球的凹凸花紋,產生大面積的仿生抗黏附表面。

他們製備半徑12.5、22.5、37.5、45.0微米的不同量級仿生表面,再以蝕刻法製出直徑幾百奈米的PS奈米棒陣列,在表面上產生第二層分層結構層。實驗得知當微球直徑為20-80微米範圍時,皆能防止黏附行為,表面黏附力(Fad)會隨PS微球陣列級別的表面形貌(topography)減少實際接觸面積、造成黏性降低。當進一步試驗表面對細胞的抗黏附性,將生長迅速的表皮癌細胞-海拉細胞(Hela cell)分別在PS薄膜、未改性(即平滑微球表面)、和半徑12.5微米經熱浮花壓製單片PS微球陣列表面上培養48小時,結果細胞以每平方公分將近8x105個密度長滿PS薄膜,而經壓製處理過的PS微球陣列表面則因微球上壓出的凹凸花紋產生物理障礙,干擾蛋白質吸附或黏附點形成,顯著減少細胞的生長密度及厚度,展現抗污染性質。

這款仿生單片聚合物微球陣列表面乾濕皆宜,能防止黏附及抵抗污染,未來希望能放大尺度,以大面積量產,可預見將能減少手術後沾黏和微生物感染等,也可應用於汽車的鼓式或碟式煞車系統,減少冬季或惡劣路況下,因為水、灰塵、泥沙等污染造成腐蝕或鏽蝕卡澀等使汽車滑動困難或卡死,提高行車安全性。此外,澳大利亞儲備銀行2016年9月在新版澳洲紙幣加入一種憑觸覺即可辨識的有效和耐用標記,除了防偽作用外,還能幫助視障者識別不同面額的鈔票,因此日後運用這種仿生微球的陣列排列方式和微粗糙度特性可作為鈔票的觸覺標識。

(以上新聞編譯自2016年3月17日發行之Bioinspiration & Biomimetics期刊等)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)


責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/2/16
本單元學術名稱:生物醫農>動物學
標籤:防黏抗污的仿生豬籠草聚合物微球陣列表面

資料來源:
Erichler-Volf, A., A. Kovalev, T. Wedeking, E. V. Gorb, L. Xue, C. You, J. Piehler, S. N. Gorb, and M. Steinhart. 2016. Bioinspired monolithic polymer microsphere arrays as generically anti-adhesive surfaces. Bioinspiration & Biomimetics, 11(2): 025002-1-11.

Gorb, E. V., M. Baum, J. Purtov, N. Jacky, S. N. Gorb, G. T. Rengarajan, A. Volf,and M. Steinhart. 2014. Tropical pitcher plant and biomimetics. Lab & More, 3: 22-26.

Gorb, E. V. and S. N. Gorb. 2011. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment. Beilstein Journal of Nanotechnology, 2: 302-310.

延伸學習:
Gorb, E. V., J. Purtov, and S. N. Gorb. 2014. Adhesion force measurements on the two wax layers of the waxy xone in Nepenthes alata pitchers. Scientific Reports, 4: 5154-1-7.

Gorb, E. V., M. J. Baum, and S. N. Gorb. 2013. Development and regeneration ability of the wax coverage in Nepenthes alata pitchers: a cryo-SEM approach. Scientific Reports, 3: 3078-1-6.





2017年2月13日 星期一

『臺博新知』:會翻身的仿生有翅機器蟑螂

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

小型快速運行的機器人如果遇到障礙物或踩到凹凸處,可能因重心不穩而摔倒翻肚,卻無法像動物或昆蟲可藉助身體、四肢、六足或翅膀設法翻轉復原,只能原地空轉,耗盡動力被迫中斷任務。但美國科學家們已經研發出一款仿生盤狀蜚蠊(Blaberus discoidalis)的六足機器蟑螂,具有一對可開合背板的翅膀,當遇遭複雜地形導致跌倒翻轉成腹面朝上時,可利用有翅的橢圓體型優勢,模擬真實蟑螂翻轉恢復正常,實現動態自我適應與矯正,即使在電量不足時也能設法翻正、持續運行,完成既定任務。
仿生盤狀蜚蠊的有翅機器蟑螂能夠翻身轉正,實現動態自我適應與矯正(繪製者:王美乃)。

被科學家當成設計機器蟑螂運動學基礎的盤狀蜚蠊,原產於中美洲和墨西哥,在美國等地常被人工飼養繁殖當成寵物飼料。又稱為盤狀蟑螂、熱帶蟑螂、海地蟑螂、偽死人頭蟑螂,屬於蜚蠊目(Blattaria或Blattodea)匍蠊科(Blaberidae),本種前胸背板有死人頭(骷髏頭)圖案,外形類似死人頭蟑螂(B. craniifer)。成蟲體長約3.5-4.5公分,若蟲無翅,成蟲有翅、卻很少飛,也無法攀爬光滑垂直表面,運動速度比美洲家蠊(Periplaneta americana)慢、且相對效率低,較容易觀察和試驗。研究團隊發現動物的自我矯正行為很複雜,盤狀蜚蠊翻倒時,大部分以翅膀和身體彎曲姿勢翻轉恢復,翻正速度達平均每秒1.6次。而機器蟑螂雖可利用完整的橢圓形背板以各種姿勢穿越地面障礙,但若因此翻倒變成六足朝天,就會被困住無法翻身,因此模仿其技巧,實現和理解使用翅膀的自我矯正機制。


盤狀蜚蠊(Blaberus discoidalis)很少飛且運動速度較慢,翻倒時仍可快速翻轉恢復正常姿勢(圖片來源:歐陽盛芝)。

仿生的有翅機器蟑螂重100公克,長、寬、高為18x12x3公分,採用去除六足的VelociRoACH蟑螂機器人之機體(長、寬、高為11x6.5x3公分),加裝馬達、變速器,再模仿盤狀蜚蠊使用翅膀的自我矯正機制,將厚卡片紙完整背板切成兩半並加裝驅動器,設計和仿製出雙翅可閉合及打開的橢圓形外殼翅膀。以智能複合微結構製造技術開發3D列印的兩個自由度(degree-of-freedom,簡稱DoF)關節接頭和四連桿傳動,接頭將翅膀連接到機體的前端。第一個自由度允許翅膀基部傾斜,第二個自由度使翅膀滾動到底座的中線,兩個伺服馬達可透過相同或獨立的控制信號驅動對稱或不對稱的打開雙翅,讓翅膀以類似蟑螂的方式移動,當完全閉合時形成橢圓形外殼就類似真實蟑螂,確保機械蟑螂能利用橢圓的背板模擬翻正。

機器蟑螂的自我矯正性能取決於影響其動作的翅膀打開幅度、速度、同步性、不對稱性、和翅膀形狀。測試結果發現,機器蟑螂的雙翅打開的速度越迅速、向外延伸幅度越大,就越快成功翻正;即使當電池電量較低,不對稱打開翅膀、展翅幅度較小時,依然有機會完成翻正動作。由於翅膀的開合是動態行為、並使機器蟑螂變形,因此能隨時利用動能翻越障礙,依此可設計出最合適的翅膀形狀,並能精確控制其開合達到預期效果,這種解決方案的成功率和速度都比現有的復原機制高,達成蟑螂機器人實現透過地形動力學(terradynamic)自我矯正、穿越各種障礙物等多種運動功能,不用再耗時費心設計變形外殼、轉移重心、被動旋轉、或重組機身等方式來躲避障礙。

這款仿生有翅機器蟑螂由美國約翰霍普金斯大學(Johns Hopkins University)李(Chen Li)助理教授、美軍研究實驗室(United States Army Research Laboratory)、及加州大學柏克萊分校共同合作,2016年10月在IEEE/RSJ智能機器人與系統國際會議(International Conference on Intelligent Robots and Systems,簡稱IROS)發表,將可視指令穿越崎嶇不平或混亂的地形地貌,如沙漠、森林、高山、倒塌建築瓦礫和碎片,不用擔心遭遇靜態和動態不穩定性和旋轉擾動、無法產生適當的地面反作用力,而造成翻倒和失去移動性的風險,故將擁有翻山越嶺的能力,可在救災時發揮奇效,並幫助人們執行環境監測、偵察、搜索和救援,以及外星探測等重要任務。

未來研究團隊將以此基礎研發新的實驗工具和理論模型,研究機器人和昆蟲在現實世界中的地形適應反饋機制,用以設計和控制全地形機器人,並擴及空中和水中機器人的應用。

(以上新聞編譯自2016年10月發行之2016 IEEE/RSJ IROS會議論文等)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館

審校:歐陽盛芝/國立臺灣博物館

日期:2017/2/9

本單元學術名稱:生物醫農>動物學

標籤:會翻身的仿生有翅機器蟑螂

資料來源:

Li, C., C. C. Kessens, A. Young, R. S. Fearing, and R. J. Full. 2016. Cockroach-inspired winged robot reveals principles of ground-based dynamic self-righting. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), 2128-2134.

Li, C., T. Wöhrl, H. K. Lam, R. J. Full. 2015. Fast, flipping cockroaches: dynamic, self-righting behavior. Society for Integrative and Comparative Biology, 2015 Annual Meeting, 55: E111.

延伸學習:

Ackerman, E. 2016. Cockroach robot flips itself with insect-inspired wings. IEEE Spectrum / Automaton / Robotics / Robot Sensors & Actuators, November 17, 2016.


Blaberus discoidalis. 2017. Wikipedia, https://en.wikipedia.org/wiki/Blaberus_discoidalis  (Visit date: 2017/01/13).

aldane, D. W., K. C. Peterson, F. L. G. Bermudez, and R. S. Fearing. 2013. Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot. Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2013), International Foundation for Autonomous Agents and Multiagent Systems, 3279-3286.

Li, C., A. O. Pullin, D. W. Haldane, H. K. Lam, R. S. Fearing, and R. J. Full. 2015. Terradynamically streamlined shapes in animals and robots enhances traversability through densely cluttered terrain. Bioinspiration & Biomimetics, 10 (4): 046003-1-24.













2017年2月6日 星期一

『臺博新知』:仿生槐葉蘋化身高效石油清道夫

賴婉婷/國立臺灣博物館研究組
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士
歐陽盛芝/國立臺灣博物館

石油勘探、運輸、儲存、加工和使用都有溢油風險,尤其海上運輸漏油事件常造成嚴重的環境污染和生態浩劫。2016年8月,德國卡爾斯魯厄理工學院(Karlsruhe Institute of Technology)霍爾舍(Hendrik Hölscher)副教授和波昂大學(University of Bonn)巴斯洛特(Wilhelm Barthlott)教授共同在《生物靈感與仿生學》(Bioinspiration & Biomimetics)期刊發表仿生槐葉蘋屬(Salvinia spp.)葉片微結構能改良奈米纖維毛「Nanofur」,具有超級疏水性和高吸油性,可只吸石油不吸水,不但能應用於處理與清潔溢油,吸油後還能回收溢油再利用,是經濟、環保、高效的人工除油和吸油劑,取代現有清除溢油材料,解決海上漏油的污染問題,未來還能利用空氣阻隔特性發展新的絕熱介面,或應用於需在水中儲存空氣的結構,例如製造低摩擦阻力的船殼塗料等。

仿生槐葉蘋的奈米纖維毛「Nanofur」能高效清除海上漏油(繪製者:王美乃)。

石油或燃油漏到海洋變成溢油時,會在海面形成油膜,降低光的通透性及產氧量,使海洋生物窒息死亡;若隨風浪吹向岸邊,經過的海洋生物、蝦蟹、浮游或附著生物等都可能沾染黏附而立即死亡,部分暫時存活者的體表皮毛可能喪失保暖和呼吸功能,或因沾黏無法游泳與覓食而難以存活。例如2010年4月美國墨西哥灣鑽油平臺爆炸、和7月中國大連新港油罐區爆炸兩起事件,共洩漏320萬桶石油污染海域,還有2016年3月德翔貨輪在臺灣石門外海擱淺斷裂的嚴重漏油,都造成巨大經濟損失和生態破壞。

溢油污染後,通常先對可能或已造成的生態損害進行預防和處理,著重海洋生物的搶救保育與生態環境的清理復原;同時控制和回收溢油減輕污染,主要分成物理、化學、和生物等三類處理法,或用助燃劑燒光漏油。但除耗費人力外,吸油材料會吸收海水而影響處理效率、殘留的油膜層和化學藥劑造成二次污染、燃燒法無法回收石油、還會產生有毒物質,造成的副作用甚至大於直接經濟損失。因此研究團隊選擇六種水生植物研發仿生吸油材料,觀察葉片表面微結構和測試吸油能力,包括水龍骨目(Polypodiales)槐葉蘋科(Salviniaceae)的人厭槐葉蘋(Salvinia molesta)、小槐葉蘋(S. minuma)、僧帽葉槐葉蘋(S. cucullata)、長圓葉槐葉蘋(S. oblongifolia)、天南星目(Arales)天南星科(Araceae)的大萍(Pistia stratiotes)和睡蓮目(Nymphaeales)蓮科(Nelumbonaceae)的蓮花(Nelumbo nucifera)。

人厭槐葉蘋(Salvinia molesta)浮葉表面密佈的毛狀體微結構形似打蛋器,具有超疏水性和高效吸油能力(圖片來源:歐陽盛芝)。

槐葉蘋是漂浮性水生蕨類,葉片分為水面的綠色卵狀浮葉、和近似根可協助平衡植株的棕色變態葉,浮葉表面密佈由頂部長著細毛,由圓錐狀小突起組成的毛狀體(trichomes),由於能填滿空氣,構成浮葉的超疏水性(superhydrophobic);細毛末端能抓住水分、並將內部空氣膜封住,為親水性(hydrophilic)微結構,可有效保留空氣層,減少葉片表面與水的接觸面積、剪應力及摩擦阻力,達到降低表面自由能(surface free energy)的效果,特稱為「槐葉蘋效應」(Salvinia effect)。此外,蓮花葉具有奈米級蠟晶體,覆蓋由乳突形成的微晶,是兩級分層表面結構;槐葉蘋和大萍葉則具有更複雜的三級分層表面架構,毛狀體或毛高約數百微米,含有用奈米級蠟晶體疊加的微小凸起細胞,可確保其浮力和存活,表面覆蓋的疏水性蠟還能避免水分過度蒸發、微生物和機械損傷、或水的降解作用(degradation)。

科學家測量四種槐葉蘋浮葉表面,人厭槐葉蘋的葉面積256mm2(=10-6m2,平方毫米),毛狀體結構是圓錐狀小突起,上接末端連結的四根細毛,形似打蛋器,高2,629µm(=10-6m,微米);小槐葉蘋的葉面積23mm2,具有類似形狀的毛狀體,但四根細毛的末端散開,高919µm;僧帽葉槐葉蘋的葉面積156mm2,毛狀體是略彎的單一細長錐狀,高558µm;長圓葉槐葉蘋的葉面積543mm2,有圓錐狀小突起,上接末端連結的兩根細毛,朝相同方向彎曲,高310µm。

測試這四種植物每平方公分葉片吸附能力的公克量依序為650.0、319.3、313.5、441.1 gm-2,證實人厭槐葉蘋的吸油效果最好,其葉片放入油水混合物中數秒內即可吸油,30秒內可達最大吸附量,油可持續保留至數天後葉片代謝分解;而針對人造原油Grüssing Roherdölersatz PAE15805、液壓油Total Azolla ZS 10、和兩種原油MiRO OK 679及MiRO EK 651試驗也得知,當油密度和黏度愈高,人厭槐葉蘋的吸油能力愈大。並確定人厭槐葉蘋和大萍的吸油能力,均高於奈米纖維毛及市售兩種吸油劑OI-EX Allwetter Typ Ⅲ R及Deurex Pure。

槐葉蘋的毛狀體的高度、體積、獨特結構、和細毛剛性都會影響油的吸附力,尤其細毛末端形狀能決定油和空氣的接觸面積,細毛間的空間可用於存油,長毛吸油能力又比短毛高,具有適度彈性或剛性的細毛有適當彎曲度(末端連接且向下彎曲),能確保油和空氣界面被支撐,擁有較高的吸油能力、並能長期保留。若細毛彈性太高,反而發生極端變形彎曲;或末端未連接的單根毛狀體是無彈性細毛,無法支持油和空氣界面,均導致吸油能力降低。

研究團隊因此建立Nanofur原型的改善基準,先將鋼板噴砂產生微奈米尺寸的小坑洞,然後加熱粗糙噴砂鋼板,壓製到聚碳酸酯薄膜中熔化表面,當鋼板回縮時,從表面拉出仿生毛狀體結構細毛,仿製長且彎曲的連結末端,經測試Nanofur改良版具有類似槐葉蘋葉片的複雜三級分層表面結構,雖然尚未能完全仿製人厭槐葉蘋打蛋器形狀的毛狀體,但已可支撐油和水界面,細毛間空間能完全填充吸收的油,實現高效吸油容量且能油水分離,可用於環境清潔並化身高效石油清道夫,解決海上漏油的污染問題。

(以上新聞編譯自2016年8月16日發行之Bioinspiration & Biomimetics期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)

責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館

日期:2017/2/2

本單元學術名稱:生物醫農>動物學
標籤:仿生槐葉蘋化身高效石油清道夫

資料來源:

Zeiger, C., I. C Rodrigues da Silva, M. Mail, M. N. Kavalenka, W. Barthlott, and H. Hölscher. 2016. Microstructures of superhydrophobic plant leaves-inspiration for efficient oil spill cleanup materials. Bioinspiration & Biomimetics, 11 (5): 056003-1-9.


延伸學習:

施政伯。2014。槐葉蘋葉面上的空氣膜。週日閱讀科學大師,2014年3月20日(http://science.nchc.org.tw/blog/?p=690)。

鄒敏惠、詹嘉紋。2016-03-28. 【海污事件簿】海上漏油怎麼一回事?互動地圖帶你看。環境資訊中心(TEIA, Taiwan Environmental Information Center),2016年3月28日(http://e-info.org.tw/node/113801)。

Helms, F. 2016. Nanofur separates oil from water. KIT (Karlsruhe Institute of Technology) / Technology Offers, https://www.kit-technology.de/en/technology-proposals/details/537/ (Visit date: 2017/01/11).

Salvinia effect. 2017. Wikipedia, https://en.wikipedia.org/wiki/Salvinia_effect (Visit date: 2017/01/10).

Schinarakis, K. 2016. Nanofur for oil cleanup. KIT (Karlsruhe Institute of Technology), No. 115, August 18, 2016 (http://www.kit.edu/kit/english/pi_2016_115_nanofur-for-
oil-spillcleanup.php).


Varghese, P. 2016. Hydrophobic plant leaves to clear up oil spills. Innotrendz / Science, October 20, 2016 (http://innotrendz.com/science/hydrophobic-plant-leaves-to-clear-
Clear-up-oil-spills/).

最新留言

追蹤者

搜尋此網誌