2017年3月6日 星期一

『臺博新知』:仿生紅鮑殼的超強韌碳化矽層狀陶瓷

賴婉婷/國立臺灣博物館研究組
歐陽盛芝/國立臺灣博物館
歐陽盛菊/國立清華大學工業工程與工程管理研究所碩士

透過改變如陶瓷/聚合物比例、層厚度、連接的陶瓷橋等處理參數,加州大學柏克萊分校(UC Berkeley)里奇(Robert O. Ritchie)博士領導的研究團隊以冷凍鑄造(Freeze casting)技術,採用層狀或樹枝狀結構的碳化矽(silicon carbide,簡稱SiC)/聚甲基丙烯酸甲酯(polymethyl methacrylate,簡稱PMMA)複合材料,優化仿生紅鮑(Haliotis rufescens)貝殼珍珠質(nacre or mother of pearl,又稱珍珠母)層狀陶瓷碳化矽的強度及韌性,即在脆性的陶瓷材料中加入軟質的耐高溫材料,提高新型陶瓷材料在結構應用中的強韌度,成果已於2015年7月在《Acta Materialia》期刊發表。貝殼珍珠質即珍珠層(nacreous layer),機械性能堅硬、堅固、和堅韌,由具有95-99%(重量百分比)碳酸鈣形成的文石層與1-5%有機層層疊的磚牆結構組成複合材料,與角質層(periostracum layer)和棱柱層(prismatic layer)、同為構成貝殼的主要成分,其奈米結構經常被研發為各種仿生層狀陶瓷,以解決傳統陶瓷容易斷、脆裂的缺點。

仿生紅鮑殼的碳化矽層狀陶瓷超強韌、耐高溫且不易斷、脆裂(繪製者:王美乃)。

紅鮑屬於腹足綱(Gastropoda)原始腹足目(Archaeogastropoda)鮑螺科(Haliotidae),主要分布於美國加州至墨西哥沿岸,為常見的食用貝類,體型較大,鮑殼可超過30公分,是紅鮑的防護裝備,可抵抗壓力和防止柔軟軀體受損,殼背面邊緣有一排用來呼吸、釋放配子、和排放廢棄物的橢圓形小孔,隨著紅鮑生長,會將不用的舊孔填充密封並長出新的開孔,常以腹足牢牢吸附在潮間帶岩石並藏身裂縫或岩石下,主要取食固著的藻類、海帶和浮游生物。本種貝殼厚度約0.6-0.7公釐,最外層是俗稱殼皮的角質層,非常薄(約100-200奈米,nm=10-9m)且較易磨損剝落,成分為又稱介殼素的貝殼硬蛋白(conchiolin);內為兩層不同晶型結構的碳酸鈣(CaCO3),第二層是菱方晶系(rhombohedral)方解石(calcite)構成的棱柱層,厚度約0.3公釐,約佔殼厚的50%;另外約50%殼厚的第三層是結構最強韌的珍珠層,由95%斜方晶系(orthorhombic,又稱正交晶系)文石(aragonite,又稱霰石)晶片、5%有機質(幾丁質與絲蛋白)和極少量的水組成。
紅鮑(Haliotis_rufescens)貝殼珍珠質,具有獨特的軟硬交替多層微結構,形成堅硬、堅固、和堅韌的機械性能(圖片來源:國立臺灣博物館,歐陽盛芝重製)。

軟體動物的貝殼為「礦化組織」(mineralized tissues),是一種典型的「生物礦化」(biomineralization)過程,即生物在體內產生礦物質,透過有機分子可在奈米尺度精確控制體內無機礦物的結晶行為。雖然貝殼珍珠層含95%普通陶瓷碳酸鈣,但綜合力學性能。如強度為130百萬帕(Mpa),其斷裂韌性(指材料在衝擊載荷作用下抵抗變形和斷裂的能力)為1 kJ m-2,比純碳酸鈣晶體高三千倍。以高倍電子顯微鏡觀察,文石晶片呈六邊形,由晶體聚集而成,直徑約5-8µm(=10-6m),厚約0.4µm,其碳酸鈣晶體長、寬為200x100奈米,且含大量雙晶體,位於碳酸鈣晶體界面上的有機質尺寸僅約10奈米,屬於一種天然的陶瓷基複合材料。文石晶片就如同築牆的磚塊,由類似水泥的有機質黏合,交叉疊層,文石晶片層表面具許多微突起的礦物橋,連接層與層間,和有機質共同黏結堆砌成非常整齊的「磚和水泥」(brick-and-mortar)微結構,這種獨特的軟硬交替多層結構側面近似磚牆,層面則與多晶體的金屬及合金相似,使貝殼珍珠層具備優異性能。

陶瓷材料是經過成形、燒結製成的無機非金屬材料,傳統材料從地球原有的黏土資源萃取而成,如黏土、氧化鋁、和高嶺土等;新型材料主要以高純超細人工合成的無機化合物為原料,採用精密控制工藝燒結製成,主要成分為氧化物、氮化物、硼化物、和碳化物等,原子間鍵結主要是共價鍵和離子鍵,因此比金屬材料的原子間以金屬鍵鍵結具有更佳強度。近年來已研發出比金屬輕,兼具高溫穩定性、耐腐蝕、高抗壓強度、耐磨損等性能的「結構陶瓷」,已廣泛應用於耐磨元件、車削刀具、熱交換器、引擎元件、生醫、軍事及太空上。常用的結構陶瓷材料之一為碳化矽,其硬度、耐熱性、耐氧化性、耐腐蝕性及高導熱性更佳,因熱傳導係數較高,適合作為攝氏1,300-1,400度環境的高溫型熱交換器,被廣泛用於製造機械工程結構件和化學工程密封件等,同時可應用於強酸、強鹼、高磨耗、高溫、航太等極端條件的環境。

研究團隊開發的仿生層狀陶瓷採冷凍鑄造技術,以冰模製造具有層狀或樹枝狀結構特徵的多孔SiC框架,浸潤在PMMA中滲透,產生陶瓷含量(體積百分比40-60%)、薄片厚度(5-35μm)、和在各薄片間陶瓷橋(仿生鮑貝礦物橋)不同數量組合的複合材料。當以三點彎曲試驗測試,隨陶瓷含量增加其彎曲強度增加,對裂紋生長的抗性(韌性)則與PMMA含量成正比;陶瓷含量相同時,形態參數m越小其強度越高;當受到應力時,複合材料中的裂紋會擴展及偏移,產生陶瓷壁的脆性晶間斷裂和聚合物層的廣泛塑性變形,呈現清晰的撕裂和拉伸,但在薄片表面的陶瓷橋被破壞前,橋接能穩定SiC和PMMA間界面。如果在製造SiC框架時改變冷卻速率和懸浮固體含量等參數,也會影響複合材料的厚度和孔隙形態,凍結(-15℃)速度亦導致從大片層到小樹枝狀晶體的冰模形態變化。

傳統複合材料韌性的增加通常與強度的降低有關,新開發的SiC/PMMA複合材料具有較高韌性、但強度卻等於或略低於現有碳化矽陶瓷商品Hexoloy SA,因此可證藉由改變陶瓷形態構成層狀或樹枝狀層橋接,就能增加強度與韌性。未來透過精細調整和控制加工處理參數,將能製造期望機械性能(特別是韌性)的碳化矽複合材料結構;若組合不同結構陶瓷或其他材料,可改良陶瓷機械性能或功能性用途,提升能源使用效率,降低器件耗損,創造出更強、更堅韌、更輕、可持續的智能複合材料,運用於汽化管道、熱電偶套管、燃燒器零件、高效能發動機、坩堝、耐火材料及熱交換器、發熱體、研磨材、和在超過攝氏3,300度運作的渦輪發動機等,甚至製成可抵擋大口徑步槍射擊的防彈背心。

(以上新聞編譯自2015年7月9日發行之Acta Materialia期刊)

(本文由科技部補助「向大自然借鏡:生物行為的科學解密」執行團隊撰稿)


責任編輯:歐陽盛芝/國立臺灣博物館
審校:歐陽盛芝/國立臺灣博物館
日期:2017/3/2
本單元學術名稱:生物醫農>動物學
標籤:仿生紅鮑殼的超強韌碳化矽層狀陶瓷

資料來源:
Naglieri, V., B. Gludovatz, A. P. Tomsia, and R. O. Ritchie. 2015. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98: 141-151.

延伸學習:
李京桓、黃肇瑞。2013。生活化的結構陶瓷。科學發展月刊,(481): 60-65。
段維新。2004。以大自然為師:仿生陶瓷。科學發展月刊,(375): 12-15。
孫娜、吳俊濤、江雷。2011。貝殼珍珠層及其仿生材料的研究進展。高等學校化學學報,32(10): 2231-2239。
陶瓷工程。2017。維基百科,https://zh.wikipedia.org/zh-tw/%E9%99%B6%E7%93%B7%
E5%B7%A5%E7%A8%8B(瀏覽日期:2017/02/07)。
Biomineralization. 2017. Wikipedia, https://en.wikipedia.org/wiki/Biomineralization (Visit date: 2017/02/09).
Guo, D.-J. 2011. Microstructure and crystallography of abalone shells. Master thesis, School of Geographical and Earth Sciences, University of Glasgow, 108 pp.
Marin, F., N. L. Roy, and B. Marie. 2012. The formation and mineralization of mollusk shell. Frontiers in Bioscience S4, 1099-1125.
Naglieri, V., H. A. Bale, B. Gludovatz, A. P. Tomsia, and R. O. Ritchie. 2013. On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61: 6948–6957.
Red abalone-Haliotis rufescens. 2017. Encyclopedia of Life, http://eol.org/pages/620396/
details (Visit date: 2017/02/10).

沒有留言:

張貼留言

謝謝您喜愛臺博部落格,歡迎您與我們分享。

最新留言

追蹤者

搜尋此網誌